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Study on Radiation in 3-D Irregular Systems Using the 
Trapezoidal Rule Approximation on the Transport Equation 
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In this study, the integral of the radiative source function appearing in the apparent solution 

of the Radiative Transfer Equat ion(RTE) is approximated by the two point trapezoidal rule 

which is different from the Taylor series expansion approximation used in the Finite Volume 

Method(FVM) or the discrete ordinates interpolation method. The resulting equation derived 

from the trapezoidal rule approximation has much simpler form than that obtained from the 

existing Taylor series approximation. The approximate equation of transfer by the trapezoidal 

rule is applied for the discrete ordinates interpolation method using nonorthogonal grid systems 

to predict the radiative heat transfer in 3 D enclosures filled with a gray, absorbing, emitting 

and scattering medium. The upstream intensity and the source function required for analyses are 

determined by a linear interpolation on a diagonally placed triangular plane that is reported to 

be very simple for radiative transfer analyses in three dimensional irregular systems. Numerical 

results indicate that good accuracy is obtained by using the trapezoidal rule which showed fairly 

good agreement with the results from the zone method or the original discrete ordinates 

interpolation method both of which are considered to be more accurate as compared to the 

conventional S-N discrete ordinate method and the FVM. The trapezoidal rule proposed in this 

study is successful for nonorthogonal grid systems and it can be used for analyses of the radiative 

transfer in three dimensional irregular enclosures. 

Key Words : Radiation, DOIM(Discrete Ordinates Interpolation Method)Irregular Geometry, 

Trapezoidal Rule, Mie-Anisotropic  Scattering 

1. In troduct ion  

Recent energy systems are complicated in their 

shapes to achieve compactness and high thermal 

efficiency. As a result, system boundaries are 

often i r r egu l a r  and the n o n o r t h o g o n a l  

computational grids are frequently used to adapt 

to the irregular boundary area faces. The solution 

methods for convective hear transfer using nonor- 

thogonal grids are fairly well developed and 
many commercial codes are appearing in the 

puMic domain (Peric, 1985). However, for 

radiative heat transfer analyses, solution methods 

are under development for the nonorthogonal 
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grids to be applied in irregular systems. 

Chui and Raithby(1993) proposed a solution 

method for nonorthogonal grids by using the 

finite-volume technique to solve the radiative 

transfer in 2D four sided enclosure, annular cyl- 

inder and J shaped enclosure filled with absorb- 

ing, emitting and scattering media. Chat et al. 

(1994) proposed a somewhat different finite vol- 

ume method where they used a formulation simi- 

lar to the ordinary discrete ordinates method, and 

the method was successfully applied for some 2D 

irregular enclosures. Kim am:l Baek(1997) 

applied tile finite volume method of Chui and 

Raithby tbr radiative transfer analyses in three 

dimensional enclosures such as a regular paral- 

lelepiped and an irregular gas turbine shaped 

system. On the other hand, Cheong and Song 

(1996) proposed a new scheme for the radiative 
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transfer in 2D irregular enclosures where they 

tried to compute the radiative intensities at the 

point in the medium directly without considering 

the usual control volume concept and the)' called 

this method as the discrete ordinates interpolation 

method. Seo and Kim (1996) extended the discrete 

ordinates interpolation method to the three 

dimensional irregular systems by using a simple 

yet accurate interpolation scheme where they 

proposed a linear interpolation on the diagonally 

placed triangular interpolat ion plane. The 

proposed scheme has proved to be successful for 

highly irregular three dimensional systems. It is 

notable that all of the solution methods for irregu- 

lar systems outlined above are developed by using 

the integrated apparent solution of the radiative 

transfer equation. 

In this study, the integrated apparent solution 

of the radiative transfer equation is re-examined 

for a suitable approximation to be applied for the 

FVM or the discrete ordinates interpolation 

method developed for irregular systems. Previous 

approximation to the apparent solution has relied 

on the Taylor  series expansion on the radiative 

source function and then a spatial integration 

performed analytically, resulting in a more or less 

complicated final equation for the radiative inten- 

sity. The motivation of this paper is to find a 

simpler form of the final approximated equation 

from the original apparent solution. For this 

purpose, the trapezoidal rule is directly applied to 

the spatial integration and the performance of this 

approximation is studied by applying it to some 

three dimensional regular and irregular enclo- 

sures using the discrete ordinates interpolation 

method. 

2. Theoretical Background 

2.1 Radiative transfer equation 
For an absorbing, emitting and scattering 

medium the radiative transfer equation can be 

written by donsidering a ray traveling along a 

path s in the direction of 32 through the medium 

as (Siegel and Howell, 1992; Kim, 1995) 

c~I (s, 32) 
~s f [ 3 ( s ) l ( s ,  32) S ( s ,  32) ( la)  

where the radiative source function 5;(s, 32) is 

defined as 

+as(s) f I S ( s ,  3 2 ) = a ( s ) l b ( s )  4~z J4~ (s, 32") �9 

~ (32' ; 32) d32'. ( lb)  

Here, /~(s) is the extinction coefficient of the 

medium and is the sum of the absorption coeffi- 

cient a ( s )  and the scattering coefficient ~Ts(s) as 

/3(s) = a ( s )  +a~(s) (2) 

The scattering phase function O (32' ; 32) appear- 

ing in Eq. (Ib) is the probabili ty ,distribution 

function of the radiative energy scattered into the 

direction 32 that is incident from the direction 32'. 

The scattering phase function is usually expressed 

in a series of the Legendre functions as [Clark et 
al. (1957)] 

K 

(32' ; 32) = ~, CnP~ (cos ~ )  (3) 
n ~ 0  

Where the coefficients C,~ in the series are deter- 

mined from the Mie theory [Mie, 1908] which is 

derived by considering a spherical particle and 

are functions of the size parameter and the re- 

fractive index of the particle considered (Kim and 

Lee, 1988). In Eq. (3) ~ indicates the angle 

measured between the incident and the scattered 

directions. 

By integrating Eq. (1) along the path length s, 

we may obtain an apparent solution of the 

radiative transfer equation. The integration may 

be performed between an upstream point zt, 

where the radiative intensity along the direction 

32 is Iu, and a point p ,  where the intensity into 32 

is Ip, as shown in Fig. 1. The resulting apparent 

solution is 

/ , , (se,  32)=Iu(s'~, 32)exp{-f,7"/~(s)ds } (4) 

By assuming that the extinction coefficient /~ (s) 

remains uniform within an infinitesimal distance 

As=s~  ,s~ as f l ( s ) - - / % ,  Eq, (4) can be written 

in a simpler form as 

Ip(sp, 32):=I,,(s~, 32)exp( /%A/s) 

~ S(s ,  32)exp{-  ( s e - s ) ~ p } &  (5) 
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Fig. I Radiative intensity along a path. 

As shown in Eq. (5) there still remains an inte- 

gral over the path length in the apparent solution 

which needs further approximation for future 

numerical computations. 

There are various ways of approximating the 

spatial integration which can result in fairly 

accurate intensity solutions. Some of these ap- 

prosimations will be discussed in this section in 

some detail for comparison. 

2.1.1 Taylor series approximation 

To complete the spatial integration appearing 

in Eq. (5) the radiative source function S ( s ,  

s can be expressed by the Taylor series expan- 

sion around a point p as (Chui and Raithby, 

1993). 

S ( s ,  s  s  "Q))p(S Sp) 

-~-2~ ( .  c~2S (s'~.~2 s )p(g-sP) 2-U''' (6) 

In Eq. (6) we may neglect the high order terms of 

the infinitesimal distance s-Sp and the following 

approximate expression for the radiative source 

function can be obtained. 

S(s. s s  .(2))p(S sp) 

(7) 

Now Eq. (7) is substituted into the Eq. (5) and 

the intergration is performed analytically to 

obtain the following final form of the approxi- 

mate apparent solution indicating the radiative 

transfer along the finite distance /_/s--sp ,s'~. 

Ip(sP, s I~(s~, s e - ~ ' ~  Se(s> s 
3. 

{1-e ~.'~(l +~z/s)} (8) 

where the derivative of the radiative source func- 

tion at point p can also be approximated by the 

slope of the source function between two neigh- 

bouring points p and u as 

( 3S (S,3s s _ Sp (sp, s Z/.s'S~ (s~, s (9) 

2.1.2 Trapezoidal rule approximation 

An another way of approximating the spatial 

integral is to approximate the integral directly by 

a numerical quadrature as the trapezoidal rule. 

That is, the integral can be replaced by the two- 

point quadrature expression between u and P,  

and the resulting approximate expression for the 

apparent solution can have the following form as 

Ip(sp, s  s ~ '~  

+ ~s{s . (s> s s (10) 

Both of the Eqs. (8) and (10) can be used either 

for the FVM or the discrete ordinates interpola- 

tion method. The equation given in Eq. (10) has 

a much simpler form and is linearly dependent 

upon the medium transmittance for easier applica- 

tion to nongray gases as compared to Eq. (8). 

2.2 Supplemental equations 

As the boundary condition for the transfer 

equation shown in Eq. (8) or (10), we may 

consider the radiative intensity' from a diffusely 

reflecting opaque wall as (Kim, 1995) 

Iw(s~,. s 

+ pw(sw) f.~,.<,l ~7"s s163 

for ff.s > 0  (11) 

where ff is the unit inward normal vector from 

the wall. 

Once the radiative intensity field is obtained 

from solving the radiative transfer equation, the 

average intensity(G) and the radiative heat fluxes 

can be obtained from the following expressions. 

G(s )  : AI_ f l(s, s163 (12) 
~ 7/- J~c2 = 4  7r 
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Qrx(S) =s /, I (s. aQ) df2 (13a) 

s =4 = 72 I (s, ~Q) d,Q (13b) (s) 

= s  4 =~ I (s, .Q) d$2 (13c) O~(s) 

3. Discrete Ordinates Interpolation 
Method 

3.1 Discrete ordinate equations 
Solution of the radiative transfer can be 

obtained by using the approximate form of the 

radiative transfer equation shown in Eq. (8) or 

(10). For this purpose the equation of transfer 

should be solved at all locations and for all 

directions. The angular distribution of the 

radiative intensity is frequently approximated by 

considering the finite number of discrete ordinates 

which are the basis of the standard discrete or- 

dinates method or the discrete ordinates interpola- 

tion method. Now we may apply the approximate 

form of the equation of transfer shown in Eq. (8) 

or (10) for these discrete ordinates which are 

established at a location in the medium for the 

total number of M discrete direction. For an 

arbitrary ruth ordinate direction indicated by Q,~ 

--(/Zm, ~m, ~,,) we may write the discrete or- 

dinate equation corresponding to the approxi- 

mate equation of transfer as the following. 

3.1.1 Taylor series expansion form 

i , ~ p,,~.,. ,+ S'p m , _ c'-~"J~') p,m:lu,m(S " ~ ' ~ "  t I (14) 

I (as(s.  _o) )~ . { ,  e_~.~8~ 
2% as 

( i + 2~As=) } 
where, (aS  (s, ,(2) 1 ~.SP,m-S~,m as /~,,~ " As= (15) 

3.1.3 Trapezoidal rule form 

Iv,,,,=: I~,,,e ~'~'' + ~m { S,,,,~ + S',,,,~e ~'~"} 

(16) 

Here, the radiative source function for the ruth 

discrete ordinate direction SP,m is also expressed 

in a discrete form by replacing the angular inte- 

gral by the Gaussian quadrature as 

__ O's/, ~ ,  
Sp,m=aeI~p ~-m=lWm'Im'(~m';m (17) 

where, co~,' is the angular weight for the m'th 

ordinate direction. 

In Eqs. (14)~(16)  the radiative intensity 

(I~,,~) and the radiative source function (S~,,,) at 

the upstream u point can be determined by a 

suitable interpolation using the known upstream 

point values respectively. 

3.2 Point u on the triangular interpolation 
plane 

Figure 2 shows the typical node arrangement 

and the ordinate direction $2 in 3-D space where 

E, W ,  N, S, T and B are the neighbouring 

node points adjacent to the center node p .  Simi- 

lar node arrangement can be applied for any 

irregular grid system for the analysis suggested in 

this paper. The angular radiative intensity distri- 

bution a node p can be computed either by using 

Eq. (14) or Eq. (16). Prior to this calculation, 

the intensity I ,  and source function s must be 

determined first by a suitable interpolation using 

the known intensity and source function values at 

the upstream nodes (W,  S and /3 nodes for 

the concerned direction). In this study the linear 

interpolation scheme on a diagonally placed tri- 

angular plane (Seo and Kim, 1996) is used to 

determine I ,  and <% where the coordinates of the 

upstream interpolation point u can be determined 

by using lhe known edge coordinates of the tri- 

angle WSB. 

The interpolation is performed on the triangle 

T 

~ f i () _ N 

I, 7 . : /  i, s i n  c.os.~ 
: 0 ' n= s i n O  s lTi '~ 

/ > I?;." .,= oo~.: 

,,I 

/ 

/ ,  ] , 

Fig. 2 Typical node arrangement for a triangular 
interpolation plane. 
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Fig. 3 Linear interpolation on a triangular element. 

extending over the three upstream node points 

WSB where the known node values (~Sw, r ~B) 

are specified. By referring to the same triangle 

shown fiat on the page as in Fig. 3, an arbitrary 

function q5 at the upstream point it (noted by qS,~) 

can be determined by considering the following 

linear interpolation as the inverse distance inter- 

polation method (Ripley, 1981). 

(18) 

where, ['s are the distances between the corner 

nodes and the u point, and L's  are the distances 

between the corner nodes and the edge lines. 

4. Numerical  Results  and Discussions 

To evaluate the accuracy of the approximate 

transfer equation, some typical radiative equilib- 

rium problems are considered. For a radiative 

equilibrium we consider an energy balance equa- 

tion. 

, 2 ] ' @ = q  (19) 

In this study the above radiative equilibrium is 

applied for a three dimensional regular parallele- 

piped and a three dimensional irregular enclo- 

sure. 

4.1 Regular system 
The System studied here has the dimensions of 

Fig. 4 

f 

Schematic diagram of the 3 D rectangular 
system. 

L • 2 1 5  2m, H = 4 m )  as shown in Fig. 

4 (Mengtic and Viskanta, 1985). The bottom wall 

of the system (z - -0 [mJ )  is maintained at a 

constant temperature of 1200s with an emis- 

sivity ofew--0.85. T h e t o p  wall (z 4 [m])  is at 

400K and &, 0.7. All the other side walls are at 

900A" and ~w=0.7. The pure absorbing medium 

filling the system has the extinction coefficient of 

f l=0 .5m -~ and has a uniform heat generation 

rate of q ~ 5 . 0 k W / m  a. For the numerical study, 

tile system is uniformly subdivided by 10• 10• 

control volumes. 

Figure 5(a) and 5(b) show the comparison of 

the current LMS-10 results obtained from the 

discrete ordinates interpolation method using the 

trapezoidal rule with the results obtained from 

other methods. The LMS-10 (corresponding to 

the S-10 method) results using the Taylor series 

(Seo and Kim, 1996), the zonal method with 5• 

5,45 control volumes (Mengiic and Viskanta, 

1985), the standard S 10 method(Kim et al., 

1994) and the FVM using the Taylor series with 

uniformly spaced 10• 12 directions (Kim and 

Baek, 1997) are cosidered for the comparison. 

Figure 5(a) shows the temperature distributions 

obtained from the different methods, and the 
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Comparison of temperatures and wall heat fluxes for various methods. 

"fi 2 0  

Table 1 Comparison of temperatures and wall heat fluxes at x = y =  I [m] .  

1060.00 
0.4 [ m 

~ e r r o r  

hk'] 

3.6[m] L_ 
e r ro r  

7C Or Lt'qr/"Uh'"] 25-004e  ._o  
(Note)  error=[ r r ....... d2 . . . .  ] 

Errors relative to the zonal results 

LMS 10 LMS 10 
FVM(120) Standard S-10 

(10x 10x20) (10x  10:420) 
(10>< 10x 20) (10>: 10x 20) 

Trapezoidal rule Taylor expansion 

1053.20 1049.96 1049.8 

-- 0.6329,6 0.64~ 0.9596 -- 0.962% 

951.25 951.15 952.79 951.16 

- 0.184% - 0.194% -- 0.02% 0.193% 

874.21 874.14 878,27 877.96 

0.369~ 0.36% 0.83% 0.800% 

53.22 53.26 53.70 53.00 

1.371% 1.45% 2.29% 0.952% 

25.01 25.00 25.38 25.03 

0.04% 0.00% 1.52% : 0.12% 

• 100% 

cur ren t  [ ,MS-10  results using the t r apezo ida l  rule 

agree fairly well wi th  those ob ta ined  f rom the 

o ther  methods.  The  rad ia t ive  heat  flux d is t r ibu-  

t ions on the hot  and  cold walls are also compared  

in Fig. 5{b) with  a good agreement  with  the o ther  

methods.  In Tab le  I the typical  med ium tempera-  

tures and  the wall rad ia t ive  heat  fluxes shown in 

Fig. 5(a)  and  (b) are c o m p a r e d  with the zonal  

results which  are cons idered  to be the b e n c h m a r k  

solut ion.  As listed in Tab le  1, the cur ren t  LMS 

-10  results us ing the t rapezo ida l  rule show a 

m a x i m u m  relat ive er ror  of  1.37% c o m p a r e d  with 

zona l  resul |s .  We may draw a conc lus ion  that  the 

p roposed  t rapezo ida l  rule is sat isfactory for the 

p ro b l em studied here. 

4.2 Irregular system 
T o  examine  the appl icab i l i ty  of  the cur ren t  

t r apezo ida l  rule on the more  compl ica ted  three  

d i men s i o n a l  systems, the rad ia t ive  equ i l i b r ium in 
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Fig. 6 Schematic diagram of the gas turbine com- 
bustor considered. 

Tabal 2 Typical dimensions of the gas turbine com- 

bustor. 

x directions .ii0 =.v~, 2[m] 
_~0 1 [m], y~ 1.423Inz], yh=3.78 

Jz0 7.6~n] 

3' directions 

z directions 

a complex gasturbine combustor-shaped enclo- 

sure(Kim and Baek, 1996) as shown in Fig. 6 is 

considered. Wall temperatures, wall reflectivities 

and heat generation rate are assumed to be the 

same as those used in the previous regular system. 

Typical dimensions of the irregular system are 

given in Table 2. For numeircal computations, 

nonorthogonal grids are generated to result in 10 

x 10• nonuniform control volumes. The cur- 

rent results obtained from the discrete ordinates 

interpolation method with the trapezoidal rule 

are compared with those obtained from the FVM 

and the discrete ordinates interpolation method, 

both of which use the transfer equation approx- 

imated by the Taylor series expansion. 

4.2.1 Effect of the scattering phase func- 
tions 

For the irregular system considered here the 

trapezoidal rule to the transfer equation is applied 

for an anisotropical[y scattering media to examine 

the effect of the scattering phase functions on the 

accuracy of this method. Three scattering phase 

functions studied here are the isotropic, forward 

scattering F2 and backward scattering B2 which 

are studied by Kim and Lee (1988). The extinc- 

tion coefficient of the participating medium is 

0.5nU t and the scattering albedo of co=0.7. 

Figure 7 and 8 show the resulting radiative heat 

flux distributions on the hot and cold walls, 

respectively. For the isotropic, forward scattering 

F2 and backward scattering B2 phase functions, 

both of the LMS-8 results using the convensional 

Taylor series expansion and the current trap- 

ezoidal rule are matched fairly well on the wall 

heat flux results. However, the FVM results show 

a maximum error of 5.2% for B2 on the hot wall 

and 4.6% for B2 on the cold wall as compared to 

the LMS 8 results. Theoretically the LMS 8 

results are considered to be more accurate than 

the FVM results obtained for the same numbers 

of spatial control volumes and discrete angular 

directions (Seo and Kim, 1996). The main reason 

of the inaccuracy experienced by the FVM is due 

to the use of the angular quadrature data generat- 

ed for the uniformly divided discrete directions 

while the two LMS 8 methods use a more accu- 

rate Gaussian type integral quadrature. 

4.2.2 Effect of the extinction coefficients.  
Another parameter considered for the compari- 

son between the trapezoidal rule and the Taylor 

series is the medium extinction coefficient. For 

purely absorbing and emitting medium the 

radiative equilibrium is solved for three different 

extinction coefficients, /9=0.5, 1.0, 2.0 ~m lj. 

Figure 9 shows the comparison of the radiative 

wall heat fluxes obtained from the different 

methods for the different extinction coefficients 

considered. The results show that the wall heat 

fluxes are reduced as the medium extinction co- 

efficient is increased and the trends are coincident 

for all the methods studied here. Among the 
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(c) Forward scattering(F2) 

Effect of the scattering phase functions on the 
cold wall heat fluxes. 

methods compared, the results obtained from the 

LMS-8 method using both the trapezoidal rule 

and the Taylor series show a good agreement for 

the medium with a small extinction coefficient of 
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Fig. 9 Effect of the extinction coefficients on the hot 
wall and cold wall heat fluxes. 

t ~ _ _ 0 . 5 j } l  1. As the extinction coefficient is in- 

creased to ;?=1.0 or 2.0 [m ~1 the discrepancy 

between two approximations is appreciable. How- 

ever, even for the small extinction coefficient, the 

FVM results (Kim and Baek, 1996) deviate from 

those obtained from the two LMS 8 methods an 

appreciable amount, and for /3--2.0 the absolute 

amounts of the error of the FVM from the LMS 

8 method with the Taylor approximation are 

about the same order as that of the LMS 8 

method with the trapezoidal rule. The errors 

observed here are about 2 to 3% for /3 1.0 

{ira ~], and about 4 to 5% for 13 2Ira-17 , For the 
participating media with very large extinction 

coefficients above ~ 5.0m t the radiative equi- 

librium solution using the LMS 8 with the trap- 

ezoidal rule showed a very slow convergence for 

the rough grid system considered here. The 

Taylor series approximation did not show any 

difficulties for the same rough grids. The problem 

was overcome for the LMS 8 method by increas- 

ing the number of control volumes from 10x 10• 

20 to 20 :x~ 20 • 30. 

5. Conclusion 

In this paper an approximate solution of the 

radiative transfer equation using the two point 

trapezoidal rule which could be used in the solu- 

tion methods developed for nonorthogonal grids 

such as the FVM and the discrete ordinates inter- 

polation method is suggested and tested for some 

radiative equilibrium problems. The existing 

Taylor series approximation results in a compli- 

cated expression for the radiative intensity. The 

trapezoidal rule approximation to the apparent 

solution of the radiative transfer equation suggest- 

ed in this study results in a simple expression 

which may be easily applied for more compli- 

cated radiative transfer problems with the rela- 

tively thin nongray gases. 

The trapezoidal rule approximation to the 

apparent solution of the radiative transfer equa- 

tion is applied to the regular and the irregular 

three dimensional enclosures by considering the 

radiative equilibrium with a constant volumetric 

heat generation. The trapezoidal rule is proved to 

be very satisfactory for the case of three dimen- 

sional radiative transfer with an anisotropic scat- 

tering media. However the method shows some 

difficulties in obtaining the convergence for the 

media with very large optical depths in which 

case finer grids are required. 
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